Conformation of Triphenyl-s-Triazine

By lan G. John, Raymond K. Pierens, and Geoffrey L. D. Ritchie,* School of Chemistry, The University of Sydney, Sydney, N.S.W. 2006, Australia

The infinite dilution molar Kerr constant of triphenyl-s-triazine as a solute in dioxan at 298 K is analysed to provide evidence concerning the molecular conformation. Structures having equivalent rotations of the phenyl groups about the inter-ring bonds are considered and its is found that the dihedral angle, ϕ , lies within the range $0 \le \phi \le 27^{\circ}$. The conformational preferences of triphenyl-s-triazine and 1,3,5-triphenylbenzene are compared.

A COMPARISON of the conformations of the structurally analogous molecules 1,3,5-triphenylbenzene and triphenyl-s-triazine (1) would be expected to reflect the

important differences between the benzene and s-triazine ring systems.¹ Although the conformational preference of 1,3,5-triphenylbenzene in various physical states has been established,²⁻⁴ only the solid-state structure⁵ of triphenyl-s-triazine is known with certainty. We here report and analyse the infinite dilution molar Kerr constant of triphenyl-s-triazine as a solute in dioxan at 298 K. The results complement previous i.r.^{6,7} and n.m.r.⁸ spectral studies of this molecule.

EXPERIMENTAL

Materials .- Triphenyl-s-triazine was recrystallized from toluene to yield needles, m.p. 229-230 °C. Analytical reagent grade dioxan was purified by passage through a

¹ A. Albert, 'Heterocyclic Chemistry,' Athlone Press, London, 1968.

² M. S. Farag, Acta Cryst., 1954, 7, 117.

³ O. Bastiansen, Acta Chem. Scand., 1952, 6, 205.

⁴ C. L. Cheng, D. S. N. Murthy, and G. L. D. Ritchie, *J.C.S. Faraday 11*, 1972, 1679.

⁵ A. Damiani, E. Giglio, and A. Ripamonti, Acta Cryst., 1965, **19**, 161.

R. D. Spencer, Spectrochim. Acta, 1965, 21, 1543.
 H. F. Shurvell, J. chim. Phys., 1965, 62, 1027.
 V. M. S. Gil and A. M. P. Pereira, Tetrahedron, 1971, 27, 5619.

neutral alumina column and stored over molecular sieves (0.4 nm; 30 g for 2 l).

Apparatus, Procedures, and Results.—Procedures for obtaining infinite dilution molar refractions and Kerr constants from observations of incremental relative permittivities, densities, refractive indices, and electric birefringences of dilute solutions in non-dipolar solvents are described elsewhere;⁹ details of symbols, solvent constants, conversion factors for units, *etc.* are also on record.^{9,10} Because of the low solubility of triphenyl-s-triazine in dioxan the ten solutions examined had weight fraction concentrations of < 0.5% w/w (*i.e.*, $10^2 w_2 < 0.5$). The results are summarized in Table 1.

TABLE 1

Molar refraction and molar Kerr constant of triphenyl-striazine at 298 K and 632.8 nm from observations on dilute solutions in dioxan ^a

αε,	0.15 ± 0.23
βÎ	0.132 ± 0.001
γ γ	0.172 ± 0.005
δ	53.5 ± 2.7
$R_{\rm D}/{\rm cm^3}$	104.9 ± 1.2
$10^{27} \infty / ({}_{ m m}K_2) / { m m^5~V^{-2}~mol^{-1}}$	229 ± 11

^a See refs. 9 and 10 for explanation of symbols.

DISCUSSION

Analysis of Kerr Constant and Molecular Conformation.—Application of the Kerr effect 9 to conformational problems is based on the bond-additivity model for the molecular polarisability, and involves comparison of the observed Kerr constant with those predicted for possible stereostructures of the molecule. In the case of triphenyl-s-triazine (1) we considered the uniplanar ($\phi 0^{\circ}$) reference structure and conformations derivable from this by equivalent rotations of the phenyl groups about the inter-ring C-C bonds; all such 'propeller' structures therefore possess a C_3 -rotation axis. It is easily shown that the molar Kerr constant of any such conformation, defined by the dihedral angle ϕ , is given by the general expression (1) in which $\Delta \alpha^{CC}$, $\Delta \alpha^{Tr}$, and $\Delta \alpha^{Ph}$ are the

$${}_{
m m}K = (N_{
m A}/81arepsilon_0)\{\gamma^{
m k} + (9/20 \ kT) \ [\Deltalpha^{
m CC} + (2/3)\Deltalpha^{
m Tr} \ + \Deltalpha^{
m Ph}(3{
m cos}^2\phi - 1)]^2\} ~~(1)$$

polarisability anisotropies $(i.e. \alpha_{\rm L} - \alpha_{\rm V})$ for the C–C bond, the triazinetriyl (C_3N_3) group, and the phenyl group. The mean second molecular hyperpolarisability, γ^k , of triphenyl-s-triazine was roughly estimated as being four times the corresponding value for benzene;¹¹ the contribution $(ca. 3 \times 10^{-27} \text{ m}^5 \text{ V}^{-2} \text{ mol}^{-1})$ which γ^k makes to the Kerr constant of this molecule is therefore probably almost negligible. Recently reported ^{10,12} anisotropic polarisabilities for benzene and s-triazine at λ 632.8 nm were used, together with standard values for the C–C and C–H bonds (Table 2).

A serious difficulty in applying the bond additivity model to triphenyl-s-triazine arises from the fact that the observed molar refraction (104.9 cm^3) considerably exceeds the value (91.4 cm^3) calculated from known group refractions, a disparity indicative of enhanced electron delocalization. The corresponding polarisability exaltation, which must be included in the calculations, is even greater than the unusually large value found for 1,3,5triphenylbenzene.⁴ Conjugative interactions would be

TABLE 2 Polarisability components (expressed as $10^{40}\alpha/C~m^2~V^{-1})$ for molecules and bonds

	$\alpha_{\rm L}$	α_{T}	$\alpha_{\rm V}$	
Benzene a, b	13.0	13.0	8.8	
s-Triazine a, c	9.8	9.8	5.0	
C-H d	0.72	0.72	0.72	
C-C d	1.08	0.29	0.29	

^a λ 632.8 nm. ^b Ref. 10. ^e Ref. 12. ^d Standard values from ref. 9 for λ 589 nm, assumed applicable at λ 632.8 nm.

expected to be more pronounced in triphenyl-s-triazine than in 1,3,5-triphenylbenzene: the nitrogen atoms have the effect of localizing charge, leaving the carbon atoms electron deficient so that rearrangements as in (2) are facilitated. Reduced steric repulsion in triphenyl-striazine would also favour such structures.

The crystal structure ⁵ of triphenyl-s-triazine showed that in the solid state this molecule is not uniplanar; the three phenyl rings are rotated from the plane of the triazine ring through different angles and in opposite senses $(\pm\phi 7 - 11^{\circ})$. However i.r. spectra ^{6,7} of both solid and solution states were interpreted as providing unequivocal evidence for the uniplanar conformation. From a study⁸ of the ¹H n.m.r. chemical shifts of triphenyl- and tri-(2-pyridyl)-s-triazine it was deduced that the latter molecule is more nearly uniplanar than the former, for which it was concluded only that $\phi < 45^{\circ}$.

Because of the uncertainty associated with the directional apportionment of the large polarisability exaltation we attempted only to define extreme upper and lower limits for ϕ . Since the exaltation is primarily an indication of extended π -electron delocalization, it would be expected predominantly to augment the molecular polarisability in the XY-plane, shown in (1). Calculations established that if the exaltation were distributed

⁹ C. G. Le Fèvre and R. J. W. Le Fèvre, in 'Techniques of Chemistry,' ed. A. Weissberger, Wiley-Interscience, New York, 1972, vol. 1, part IIIC, ch. 6, p. 399.
¹⁰ M. R. Battaglia and G. L. D. Ritchie, *J.C.S. Faraday II*,

¹⁰ M. R. Battaglia and G. L. D. Ritchie, *J.C.S. Faraday II*, 1977, 209.

M. P. Bogaard, A. D. Buckingham, and G. L. D. Ritchie, Mol. Phys., 1970, 18, 575.
 M. R. Battaglia and G. L. D. Ritchie, Mol. Phys., 1976, 32,

¹² M. R. Battaglia and G. L. D. Ritchie, *Mol. Phys.*, 1976, **32**, 1481; *J.C.S. Perkin II*, 1977, 897.

in the ratio $\Delta \alpha_{XX} : \Delta \alpha_{YY} : \Delta \alpha_{ZZ} = 0.43 : 0.43 : 0.14$ (which is reasonable), the predicted Kerr constant for $\phi \ 0^{\circ}$ is equal to the observed value. Therefore, on the present evidence, the uniplanar conformation cannot be excluded, and $\phi \ 0^{\circ}$ is the *minimum* permissible dihedral angle. The *maximum* value of ϕ is obtained, as can be seen from equation (1), when the exaltation is assigned completely to the XY-plane ($\Delta \alpha_{XX} : \Delta \alpha_{YY} : \Delta \alpha_{ZZ} = 0.50 : 0.50 : 0$); this has the effect of substantially increasing $\Delta \alpha^{Tr}$ and $\Delta \alpha^{CC}$ so that a much larger dihedral angle ($\phi \ 27^{\circ}$) is required for agreement between observed and calculated Kerr constants. We therefore conclude that $0 \leq \phi \leq$ 27° , the rather wide range of possible values arising from the very large polarisability exaltation exhibited by this molecule.

Conclusions.—The result for triphenyl-s-triazine ($0^{\circ} \leq \phi \leq 27^{\circ}$) may be compared with conformational evidence concerning 1,3,5-triphenylbenzene. In the solid state ² the latter molecule is non-uniplanar with $\pm \phi 24$ —34°; for the vapour, electron diffraction ³ indicated equivalent rotations of ϕ 46° for each phenyl group; and for the

solution state Kerr and Cotton-Mouton effect measurements ⁴ yielded ϕ 35 \pm 5°. The evidence suggests, therefore, that the dihedral angle in triphenyl-s-triazine is significantly smaller than that in 1,3,5-triphenylbenzene. Two main factors would appear to co-operate in producing this result: first a *steric effect*, arising from the probability that the *ortho-ortho* HC ··· N interaction is less repulsive than the corresponding HC ··· CH interaction, as shown by Murrell *et al.*¹³ from ¹H n.m.r. spectra of azabiphenyls; and also enhanced *conjugative interactions* between the s-triazine and phenyl rings.

Dr. R. S. Armstrong kindly provided a sample of triphenyl-s-triazine and informed us of some unpublished data. Financial support from the Australian Research Grants Committee and the award of a C.S.I.R.O. Postgraduate Studentship to I. G. J. are gratefully acknowledged.

[7/459 Received, 15th March, 1977]

¹³ J. N. Murrell, V. M. S. Gil, and F. B. Van Duijneveldt, *Rec. Trav. chim.*, 1965, **84**, 1399.

[©] Copyright 1977 by The Chemical Society